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Slow viscous flow of an incompressible stratified fluid 
past a sphere 
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The steady, uniform, horizontal flow of a vertically stratified, non-diffusive 
fluid over a sphere is considered. A correction to the Stokes drag formula is 
obtained which is valid for small values of a stratification parameter a, Re 4 la]* 
and Fr2 < laj-*. To the order of the calculat’ions, the sphere has no tendency to 
rotate,, nor does it experience a lift force. 

1. Introduction 
The flow of a vertically stratified fluid a t  low Reynolds number past two- 

dimensional objects has received previous attention from several authors. 
Martin & Long (1968) considered horizontal flow past a horizontal flat plate, 
Graebel(1969) treated a cylinder in uniform horizontal translation and Janowitz 
(1971) horizontal flow past a finite vertical flat plate. This present work is appar- 
ently the first attempt to deal with a closed three-dimensional body. Specifically, 
we consider the steady horizontal flow of non-diffusive viscous fluid past a sphere, 
where far upstream the velocity is uniform and density is a linear function of the 
vertical co-ordinate y. The governing equations and the boundary conditions 
for the problem are (in non-dimensional variables) 

- Vp + V2q - apj = (Re + aFr2p) q . Vq, ( l a )  

v . q  = 0, q . v p  = 0, (1 b,  c )  

q + i  as r - f m  ( r2 = x2+y2+z2) ,  P a )  

q = 0 on r = I, ( 2 b )  

p + - y  as 1x1 +a. 

The normalization is defined as follows : 

U = free-stream velocity, 

a = radius of sphere, 

p; = upstream density evaluated a t  y = 0, 

Re = p;Ua/,u = Reynolds number, 
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F r  = U/(ga)g = Froude number, 

dpL/dy‘ = = constant upstream density gradient, 

a = a,13Re/Fr2 = non-dimensional parameter, assumed to be small, 

i, j = unit vectors in the x, y directions. 

The primed quantities p‘, p’ and q‘ are in physical units and have their usual 
hydrodynamic meanings. We seek an approximate solution to ( 1 )  and (2) 
subject to the conditions that 1011 < 1, Re < la]* and Fr2 < la/-*. It is shown in 
3 2 that under the latter two conditions the inertia terms can be neglected. The 
solutions for positive and negative upstream density gradients are formally the 
same, however the former may be unstable. It is further assumed that the sphere 
is neutrally buoyant and not constrained in any way. It is not obvious a t  the 
outset that ( 2  b )  is appropriate since the sphere may rotate; however, it is shown in 
3 5 that in fact the sphere does not spin, a t  least to the order to which the calcula- 
tions are made. 

Equation ( 1  c) states that the density is constant on stream surfaces. To treat 
the diffusive case, the right-hand side of ( I  c) must be replaced by an inverse 
PBclet number times the Laplacian of p. 

A perturbation scheme involving inner and outer expansions is used, and is 
similar to that used by Chang (1960). Fourier transforms are introduced in the 
outer problem, and the matching and the calculations of the resultant forces on 
the sphere proceed along the lines of Childress (1964). The main analytical 
results of the present investigation can be summarized as 

F’ = 6npUai(l +Blal*) + O(&),  ( 3 a )  

0’ = O(a3), ( 3 b )  

where F’ is the resultant force on the sphere and o‘ its angular velocity in physical 
units. B is a positive constant whose value is 0.146, and is determined by the 
integration of a triple definite integral. Equation ( 3 a )  indicates that the resultant 
force on the sphere is a drag force to O(a*). The sphere does not rotate to O(a4); 
the orders of magnitude of the first terms contributing to rotation and lift have 
not yet been determined. 

2. The perturbation method 
We consider the following expansions of the dependent variables: 

q = h(o)(lr,y,~)+(al*h(l)(r,y,z)+lal)h(z)(x,y,~)+ ..., (4a) 

p = p(0) ( x , y,z)+ ]apP(l)(x,  y,z)+ la1~p‘2’(x, Y , X ) +  ..., (4b) 

p = p‘0’ ( x , y,4+ lal*p(”(x, y,4+ Jaj)p(z)fGY,zf+ .-. * 144 

It is not known a priori that the expansions should proceed in powers of (a]*, 
only through matching is this proper sequence determined. Substitution of 
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(4) into (1) yields the following hierarchy of equations: 

( 7 a )  

a t  O(a3) etc. ( 7  b )  

(7c) 

Proceeding in the usual way we attempt to solve (5)-(  7) subject to the boundary 
conditions (2), but we find that, a t  O(a)%, h@) does not approach zero as r -+ co. 
In  other words, ‘Whitehead’s Paradox’ (cf. Van Dyke 1964, p. 153) occurs; 
so we can conclude that the expansions (4) do not provide a uniformly valid 
approximation as r -+ co. The expansions (4), which are valid in the neighbour- 
hood of the sphere, are referred to as the inner expansions. Outer expansions 
uniformly valid in the neighbourhood of r = co are now introduced: 

(8a )  

( 8 b )  

( 8 4  

- VpW + V2hW = Re h(0) J7hCO) 

V . h(2) = 0 
2 
V h(i). Vp(2-j) = 0 
d 

j = O  

q = i + (a (+  g(l)(d,  y”, Z) + la/+ g@)(d, y”, Z) + . . ., 
p = IaIfp(0) + (a(+p(l)(d: ,  y”, Z) + (a (  p ( 2 ,  y”, 2 )  + . . . , 
p = - (a(-+y”+p(l’(2,y”,z)+ la(fp‘2’(2,y”,z“)+ ...’ 

where the outer variables are defined by 

d = jal+x, ij = la j fy ,  z“ = l a p .  (9) 

The stretching factor given by (9) is suggested by the magnitudes of the 
neglected body-force term and viscous term in (5), which for large r are in the 
ratio a:  r4 when y is of order unity. When r = O(a-f) it  can be expected that the 
inner expansions (4) cease to be accurate. 

Substitution of expansions (8) into (1) yields the equations for the outer prob- 
lem : 

- V p ( l ) + V 2 g ( l ) ~  p(”j = lal-f[Re- Ia(3 j j~r21  ag(l)/i%, (l0a)t 

( l o b ,  c )  

(11) 

The inertia terms in (1Oa) can be neglected provided that Re < lalf and 
Fr2 < loll-) as stated in 5 1. Under the transformation (9) the sphere shrinks to a 
point as a + 0, so (2 6) must be relaxed when solving (10). Similarly we relax 
(2  a)  in the inner problem, and instead require that the inner and outer expansions 
agree term by term in some overlap region where both expansions are valid, 
namely r = O(lal-S‘), where 0 < u < I. 

7 The upper and lower signs used here and throughout refer t o  the cases of negative and 
positive upstream density gradient, respectively. 

9 . g(1’ = 0, ap(l)/ad = g(1). j, 

p(O) being simply the hydrostatic contribution 
pC0) = 1p. ZJ 
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3. The solutions for h(O), p(O) and pcU) 

We seek a solution to ( 5 )  for which the no-slip condition ( 2 b )  is still enforced 
and the boundary conditions at  infinity are the first terms of the outer expansions 
(4), i.e. 

h(0) -+ i, p(0) --f 0, p(0) +--y as r -+ co. ( 1 2:a, b,  c 1 

Because p(0) is uncoupled from the velocity and pressure, h(0) and p(O) are just the 
solution to the standard Stokes problem without stratification, and by symmetry 
it can be argued that the sphere does not spin to this order, so ( 2  b )  is appropriate. 

The solution is 

We define intermediate variables ru = Ial*"r and x, = IaI*"r, where 0 < c < 1, 
and rewrite h(O) in these variables: 

for later reference. 

4. The solutions for g(l), p(l) and p(l) 

Equations (10) are now solved with the right-hand side of (lOa) replaced 
by 671.8(F)i, which is the singularity corresponding to the Stokes drag. The 
use of this singularity ensures that the inner and outer expansions will match in 
the overlap domain (cf. Childress 1964). Introducing three-dimensional Fourier 
transforms I'(k), n(k) andR(k), defined by 

and substitution into (10) leads formally to the system 

where 

- +Rj+iklT+k21' = -6ni, ( 1 5 4  

k . r  = 0, ik,R = r . j ,  (15b,4  

k = k,i+k2 j +k,k'. 
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Solving for the transformed dependent variables, we find 

klk2j--k1(l  f ik,k2)k]  
6n( k2 k2(1&iklk2)-k; ' r(k) =-- i +  

6nik,( 1 & ik ,  k2)  
II(k) = 

k2( I & ik ,  k2)  - k; ' 

f 677k,k2 
k2( 1 f ik, k2)  - k; R(k)  = 

Substitution of (16) into (14) yields the formal solution. In  the next section we 
extract the part of g(l) which contributes to the drag on the sphere. 

5. Matching and the calculation of drag 
To calculate the resultant force on the sphere and its angular velocity, it is 

sufficient to expand the inversion of ( I  6a)  about f = 0. It is convenient to con- 
sider the integral 

(r - I?,) eikaF dk as F + 0, 

where I?, is the Fourier transform of the fundamental solution for the velocity 
field of the Stokes equations, and is given by 

r,(k) = -g(i-g]. 
To evaluate (17) we divide the region into two parts: 0 < k < P-€ and k > i+, 

where 0 < e < 1. Then as P -+ 0, 

(kgk- k2k2j) . 
ezkaPdk+ ..., (19) 

k* 

where the dots denote terms of smaller order in i. The first term on the right 
side of (19) is some constant vector, say B, and the second term on the right 
side of (19) we shall call v*. Now by definition we can write (19) as 

@)-A = B+v*  as P + O ,  (20) 

where 

Rewriting (20) in intermediate variables and using (8 a )  we have 

Comparing (21) with (13) it is seen that the inner and outer expansions are 
matched to O( lal*"). The leading term in the outer expansion of q which is not 
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yet matched is O(la[*). From (21) it  follows that the inner solution h(l) which 
satisfies ( 6 )  should also satisfy the boundary conditions 

h(l) = 0 011 r = 1, (=a)  

h(l)+B+v* as r + m  (22b)  

Again it is not known apriori  that the right side of (23a)  should not be replaced 
by o x r, but it will be shown shortly that ( 2 2 a )  is appropriate. 

It is shown in the appendix that B and v* have the following properties: 

v* ( O , O ,  0) = V2V*(O,O, 0) = v x v*(O, 0 , O )  = 0, (23a ,  b, c )  

( 2 3 4  B = Bi = 0.146i. 

The net force acting on the sphere and its angular velocity, given by ( 3 ) ,  follow 
directly from Faxen's laws (Happel & Brenner 1965, p. 67) ,  which state that (in 
physical units) 

F' = 6 7 ~ p a [ q 6 ] ~  +,uTcz~[V'~~;]~,  (24a)  

T' = 877pa3{+[V' x &lo - 0'1, (24b)  

where T' is the torque and the subscript zero implies evaluation of the function 
a t  the origin as if the sphere were not present. Substitution of (12a) ,  (Sa), (22b)  
and (23a ,  b, d )  into (24a)  gives ( 3 a )  directly. In  the approximation that the fluid 
has negligible inertia, we require the torque T' to be zero, which leads to ( 3  b )  after 
inserting ( 2 3 c )  into (24b) .  

6. Extension of results to axially symmetric bodies 
For an axially symmetric body with Stokes drag Dhi, the same analysis applies, 

but we replace the singularity - 67rd'(f) i by - Do6(f) i when solving the outer 
problem (cf. Chang 1960). In  the drag formula ( 3 a )  the factor 677pUa is replaced 
by:Dh and B is replaced by BDo/6n; ( 3  b)  remains unchanged. 

The authors are especially grateful to Professor P. A. Lagerstrom, whose 
advice was invaluable in the early stages of this work. 

Appendix 
To evaluate B, the first term on the right side of ( I  9), we notice that 

The imaginary part of the integrand does not contribute to the integral since 
it is odd in k,. In  the remaining, real part, the j and k' components are also odd. 
For the i component we transform to spherical co-ordinates and integrate once 
with respect to k ,  obtaining the integral 
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Referring to Gradshteyn & Ryzhik (1965), ( A 2 )  can be expressed in terms 
of I' functions:? 

To obtain ( 2 3 a ) ,  ( 2 3 b )  and ( 2 3 c ) ,  we use 

Equations (23a) ,  ( 2 3 b )  and ( 2 3 c )  follow trivially by setting F = 0 in the inte- 
grands of ( A  3 ) ,  (A 4) and (A5) and noting that the integrands are all odd. 
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